Fusión nuclear es el proceso por el cual
varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado.
Simultáneamente se libera o absorbe una cantidad enorme de energía,
que permite a la materia entrar en un estado plasmático.
La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la Fisión nuclear, estos fenómenos suceden en sentidos opuestos.En el caso más simple de fusión, en el hidrógeno, dos protones deben acercarse lo suficiente para que la interacción nuclear fuerte pueda superar su repulsión eléctrica mutua y obtener la posterior liberación de energía. En la naturaleza ocurre fusión nuclear en las estrellas, incluido el Sol. En su interior las temperaturas son cercanas a 15 millones de Kelvin. Por ello a las reacciones de fusión se les denomina termonucleares. En varias empresas se ha logrado también la fusión (artificial), aunque todavía no ha sido totalmente controlada. Para que pueda ocurrir la fusión debe superarse una importante barrera de energía producida por la fuerza electrostática. A grandes distancias, dos núcleos se repelen debido a la fuerza de repulsión electrostática entre sus protones, cargados positivamente. Sin embargo, si se pueden acercar dos núcleos lo suficiente, debido a la interacción nuclear fuerte, que en distancias cortas es mayor, se puede superar la repulsión electrostática.Cuando un nucleón (protón o neutrón) se añade a un núcleo, la fuerza nuclear atrae a otros nucleones, pero –debido al corto alcance de esta fuerza– principalmente a sus vecinos inmediatos. Los nucleones del interior de un núcleo tienen más vecinos nucleones que los existentes en la superficie. Ya que la relación entre área de superficie y volumen de los núcleos menores es mayor, por lo general la energía de enlace por nucleón debido a la fuerza nuclear aumenta según el tamaño del núcleo, pero se aproxima a un valor límite correspondiente al de un núcleo cuyo diámetro equivalga al de casi cuatro nucleones. Por otra parte, la fuerza electrostática es inversa al cuadrado de la distancia. Así, a un protón añadido a un núcleo le afectará una repulsión electrostática de todos los otros protones. Por tanto, debido a la fuerza electrostática, cuando los núcleos se hacen más grandes, la energía electrostática por nucleón aumenta sin límite.
La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la Fisión nuclear, estos fenómenos suceden en sentidos opuestos.En el caso más simple de fusión, en el hidrógeno, dos protones deben acercarse lo suficiente para que la interacción nuclear fuerte pueda superar su repulsión eléctrica mutua y obtener la posterior liberación de energía. En la naturaleza ocurre fusión nuclear en las estrellas, incluido el Sol. En su interior las temperaturas son cercanas a 15 millones de Kelvin. Por ello a las reacciones de fusión se les denomina termonucleares. En varias empresas se ha logrado también la fusión (artificial), aunque todavía no ha sido totalmente controlada. Para que pueda ocurrir la fusión debe superarse una importante barrera de energía producida por la fuerza electrostática. A grandes distancias, dos núcleos se repelen debido a la fuerza de repulsión electrostática entre sus protones, cargados positivamente. Sin embargo, si se pueden acercar dos núcleos lo suficiente, debido a la interacción nuclear fuerte, que en distancias cortas es mayor, se puede superar la repulsión electrostática.Cuando un nucleón (protón o neutrón) se añade a un núcleo, la fuerza nuclear atrae a otros nucleones, pero –debido al corto alcance de esta fuerza– principalmente a sus vecinos inmediatos. Los nucleones del interior de un núcleo tienen más vecinos nucleones que los existentes en la superficie. Ya que la relación entre área de superficie y volumen de los núcleos menores es mayor, por lo general la energía de enlace por nucleón debido a la fuerza nuclear aumenta según el tamaño del núcleo, pero se aproxima a un valor límite correspondiente al de un núcleo cuyo diámetro equivalga al de casi cuatro nucleones. Por otra parte, la fuerza electrostática es inversa al cuadrado de la distancia. Así, a un protón añadido a un núcleo le afectará una repulsión electrostática de todos los otros protones. Por tanto, debido a la fuerza electrostática, cuando los núcleos se hacen más grandes, la energía electrostática por nucleón aumenta sin límite.
BUSCA:
información sobre cómo funciona la fusión
nuclear, en nuestra estrella, el Sol.